Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.667
Filter
Add filters

Year range
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245409

ABSTRACT

Nowadays, with the outbreak of COVID-19, the prevention and treatment of COVID-19 has gradually become the focus of social disease prevention, and most patients are also more concerned about the symptoms. COVID-19 has symptoms similar to the common cold, and it cannot be diagnosed based on the symptoms shown by the patient, so it is necessary to observe medical images of the lungs to finally determine whether they are COVID-19 positive. As the number of patients with symptoms similar to pneumonia increases, more and more medical images of the lungs need to be generated. At the same time, the number of physicians at this stage is far from meeting the needs of patients, resulting in patients unable to detect and understand their own conditions in time. In this regard, we have performed image augmentation, data cleaning, and designed a deep learning classification network based on the data set of COVID-19 lung medical images. accurate classification judgment. The network can achieve 95.76% classification accuracy for this task through a new fine-tuning method and hyperparameter tuning we designed, which has higher accuracy and less training time than the classic convolutional neural network model. © 2023 SPIE.

2.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245269

ABSTRACT

In 2021, the airline industry was affected by COVID-19, and many airlines suffered losses. The main reason for the loss were the decline in revenue and the surge in costs. Therefore, in terms of creating the competitive advantage of airlines, "price war" is no longer applicable, and improving service quality has become an effective means. Customer satisfaction is the most effective indicator to measure service quality. In this study, a satisfaction evaluation system is established based on structural equation model and customer satisfaction importance matrix. Then, a questionnaire is designed to analyze the influence of different factors on customer satisfaction. The research finds that brand image and perceived quality have a great impact on customer satisfaction. In addition, some suggestions for airlines to improve customer satisfaction are given. © 2023 SPIE.

3.
Proceedings of SPIE - The International Society for Optical Engineering ; 12626, 2023.
Article in English | Scopus | ID: covidwho-20245242

ABSTRACT

In 2020, the global spread of Coronavirus Disease 2019 exposed entire world to a severe health crisis. This has limited fast and accurate screening of suspected cases due to equipment shortages and and harsh testing environments. The current diagnosis of suspected cases has benefited greatly from the use of radiographic brain imaging, also including X-ray and scintigraphy, as a crucial addition to screening tests for new coronary pneumonia disease. However, it is impractical to gather enormous volumes of data quickly, which makes it difficult for depth models to be trained. To solve these problems, we obtained a new dataset by data augmentation Mixup method for the used chest CT slices. It uses lung infection segmentation (Inf-Net [1]) in a deep network and adds a learning framework with semi-supervised to form a Mixup-Inf-Net semi-supervised learning framework model to identify COVID-19 infection area from chest CT slices. The system depends primarily on unlabeled data and merely a minimal amount of annotated data is required;therefore, the unlabeled data generated by Mixup provides good assistance. Our framework can be used to improve improve learning and performance. The SemiSeg dataset and the actual 3D CT images that we produced are used in a variety of tests, and the analysis shows that Mixup-Inf-Net semi-supervised outperforms most SOTA segmentation models learning framework model in this study, which also enhances segmentation performance. © 2023 SPIE.

4.
British Food Journal ; 125(7):2610-2627, 2023.
Article in English | ProQuest Central | ID: covidwho-20245049

ABSTRACT

PurposeThis study aims to investigate the factors that influence young consumers' purchase intention towards dietary supplements (DS) in Malaysia.Design/methodology/approachThe supplement industry in Malaysia has been growing rapidly recently due to a paradigm shift in healthcare management, from curative to prevention. Thus, it has sparked interest to conduct a study on the factors that influence young consumers' purchase intentions towards DS. With a response rate of 74.5%, a survey questionnaire was used to elicit data from 149 Gen-Y respondents who consume supplements on a regular basis.FindingsThe results revealed that the influencing factors towards purchase decisions among these Gen-Y respondents aged between 17 and 25 are based on product knowledge and product quality. The implications of these findings and directions for future research are outlined at the end of this paper.Originality/valueThis study offers empirical insights from the perspective of an emerging digital economy on the factors that influence young consumers' purchase intentions towards DS in Malaysia.

5.
Lecture Notes in Electrical Engineering ; 954:347-356, 2023.
Article in English | Scopus | ID: covidwho-20245022

ABSTRACT

Teleconsultation is a type of medical practice similar to face-to-face consultations, and it allows a health professional to give a consultation remotely through information and communication technologies. In the context of the management of the coronavirus epidemic, the use of teleconsultation practices can facilitate healthcare access and limit the risk of avoidable propagation in medical cabinets. This paper presents the monitoring of international teleconsultation referrals in the era of Covid-19 to facilitate and prevent the suspension of access to care, the most common architecture for teleconsultation, communication technologies and protocols, vital body signals, video transmission, and the conduct of teleconsultation. The aim is to develop a teleconsultation platform to diagnose the patient in real time, transmit data from the remote location to the doctor, and provide a teleconsultation. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

6.
The Visual Computer ; 39(6):2291-2304, 2023.
Article in English | ProQuest Central | ID: covidwho-20244880

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic has spread worldwide and the healthcare system is in crisis. Accurate, automated and rapid segmentation of COVID-19 lesion in computed tomography (CT) images can help doctors diagnose and provide prognostic information. However, the variety of lesions and small regions of early lesion complicate their segmentation. To solve these problems, we propose a new SAUNet++ model with squeeze excitation residual (SER) module and atrous spatial pyramid pooling (ASPP) module. The SER module can assign more weights to more important channels and mitigate the problem of gradient disappearance;the ASPP module can obtain context information by atrous convolution using various sampling rates. In addition, the generalized dice loss (GDL) can reduce the correlation between lesion size and dice loss, and is introduced to solve the problem of small regions segmentation of COVID-19 lesion. We collected multinational CT scan data from China, Italy and Russia and conducted extensive comparative and ablation studies. The experimental results demonstrated that our method outperforms state-of-the-art models and can effectively improve the accuracy of COVID-19 lesion segmentation on the dice similarity coefficient (our: 87.38% vs. U-Net++: 84.25%), sensitivity (our: 93.28% vs. U-Net++: 89.85%) and Hausdorff distance (our: 19.99 mm vs. U-Net++: 26.79 mm), respectively.

7.
The Asian Journal of Technology Management ; 15(3):187-209, 2022.
Article in English | ProQuest Central | ID: covidwho-20244656

ABSTRACT

Purpose: to analyze the ability of the National Health Insurance mobile service quality to build BPJS brand image and public trust to increase intention to use online services during the Covid period. The background of this research is based on the phenomenon in the form of complaints on the quality of online services and research gaps on the effect of service quality on the intention to use online services. Brand image and trust are offered as a mediation for gaps in previous research results. Design/ methodology/approach: The type of research is quantitative, using a pre-existing measurement scale related to mobile service quality, brand image, trust and intention. Involving a sample of 140 BPJS users during the Covid pandemic. It is difficult to identify the population size, the sample size is determined by the formulation of a constant value of 5 multiplied by 28 indicators. The technique of selecting respondents was carried out by means of non-probability random sampling. PLS SEM model as an analysis tool. Findings: The results of this study indicate that the direct relationship of mobile service quality on brand image, trust and intention shows significant positive results. Furthermore, the influence of brand image on trust shows significant results. The influence of brand image and trust on intention is also found to be significantly positive. Practical/implications: although management policies encourage customers to use mobile services more, the public still considers the trustworthy image of BPJS to develop their intention to use mobile application services. The government must remain consistent in ensuring that the quality of mobile service is not compromised because the implications for BPJS image and public trust are at stake. Through the person in charge at BPJS, the government must continue to consistently evaluate and improve the system and educate the public regarding this BPJS health mobile service system. Originality/value: This research offers new insights, filling gaps in studies on national health insurance mobile services during the Covid-19 Pandemic

8.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12467, 2023.
Article in English | Scopus | ID: covidwho-20244646

ABSTRACT

It is important to evaluate medical imaging artificial intelligence (AI) models for possible implicit discrimination (ability to distinguish between subgroups not related to the specific clinical task of the AI model) and disparate impact (difference in outcome rate between subgroups). We studied potential implicit discrimination and disparate impact of a published deep learning/AI model for the prediction of ICU admission for COVID-19 within 24 hours of imaging. The IRB-approved, HIPAA-compliant dataset contained 8,357 chest radiography exams from February 2020-January 2022 (12% ICU admission within 24 hours) and was separated by patient into training, validation, and test sets (64%, 16%, 20% split). The AI output was evaluated in two demographic categories: sex assigned at birth (subgroups male and female) and self-reported race (subgroups Black/African-American and White). We failed to show statistical evidence that the model could implicitly discriminate between members of subgroups categorized by race based on prediction scores (area under the receiver operating characteristic curve, AUC: median [95% confidence interval, CI]: 0.53 [0.48, 0.57]) but there was some marginal evidence of implicit discrimination between members of subgroups categorized by sex (AUC: 0.54 [0.51, 0.57]). No statistical evidence for disparate impact (DI) was observed between the race subgroups (i.e. the 95% CI of the ratio of the favorable outcome rate between two subgroups included one) for the example operating point of the maximized Youden index but some evidence of disparate impact to the male subgroup based on sex was observed. These results help develop evaluation of implicit discrimination and disparate impact of AI models in the context of decision thresholds © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

9.
ACM International Conference Proceeding Series ; : 419-426, 2022.
Article in English | Scopus | ID: covidwho-20244497

ABSTRACT

The size and location of the lesions in CT images of novel corona virus pneumonia (COVID-19) change all the time, and the lesion areas have low contrast and blurred boundaries, resulting in difficult segmentation. To solve this problem, a COVID-19 image segmentation algorithm based on conditional generative adversarial network (CGAN) is proposed. Uses the improved DeeplabV3+ network as a generator, which enhances the extraction of multi-scale contextual features, reduces the number of network parameters and improves the training speed. A Markov discriminator with 6 fully convolutional layers is proposed instead of a common discriminator, with the aim of focusing more on the local features of the CT image. By continuously adversarial training between the generator and the discriminator, the network weights are optimised so that the final segmented image generated by the generator is infinitely close to the ground truth. On the COVID-19 CT public dataset, the area under the curve of ROC, F1-Score and dice similarity coefficient achieved 96.64%, 84.15% and 86.14% respectively. The experimental results show that the proposed algorithm is accurate and robust, and it has the possibility of becoming a safe, inexpensive, and time-saving medical assistant tool in clinical diagnosis, which provides a reference for computer-aided diagnosis. © 2022 ACM.

10.
Proceedings of SPIE - The International Society for Optical Engineering ; 12567, 2023.
Article in English | Scopus | ID: covidwho-20244192

ABSTRACT

The COVID-19 pandemic has challenged many of the healthcare systems around the world. Many patients who have been hospitalized due to this disease develop lung damage. In low and middle-income countries, people living in rural and remote areas have very limited access to adequate health care. Ultrasound is a safe, portable and accessible alternative;however, it has limitations such as being operator-dependent and requiring a trained professional. The use of lung ultrasound volume sweep imaging is a potential solution for this lack of physicians. In order to support this protocol, image processing together with machine learning is a potential methodology for an automatic lung damage screening system. In this paper we present an automatic detection of lung ultrasound artifacts using a Deep Neural Network, identifying clinical relevant artifacts such as pleural and A-lines contained in the ultrasound examination taken as part of the clinical screening in patients with suspected lung damage. The model achieved encouraging preliminary results such as sensitivity of 94%, specificity of 81%, and accuracy of 89% to identify the presence of A-lines. Finally, the present study could result in an alternative solution for an operator-independent lung damage screening in rural areas, leading to the integration of AI-based technology as a complementary tool for healthcare professionals. © 2023 SPIE.

11.
IEEE Transactions on Radiation and Plasma Medical Sciences ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20244069

ABSTRACT

Automatic lung infection segmentation in computed tomography (CT) scans can offer great assistance in radiological diagnosis by improving accuracy and reducing time required for diagnosis. The biggest challenges for deep learning (DL) models in segmenting infection region are the high variances in infection characteristics, fuzzy boundaries between infected and normal tissues, and the troubles in getting large number of annotated data for training. To resolve such issues, we propose a Modified U-Net (Mod-UNet) model with minor architectural changes and significant modifications in the training process of vanilla 2D UNet. As part of these modifications, we updated the loss function, optimization function, and regularization methods, added a learning rate scheduler and applied advanced data augmentation techniques. Segmentation results on two Covid-19 Lung CT segmentation datasets show that the performance of Mod-UNet is considerably better than the baseline U-Net. Furthermore, to mitigate the issue of lack of annotated data, the Mod-UNet is used in a semi-supervised framework (Semi-Mod-UNet) which works on a random sampling approach to progressively enlarge the training dataset from a large pool of unannotated CT slices. Exhaustive experiments on the two Covid-19 CT segmentation datasets and on a real lung CT volume show that the Mod-UNet and Semi-Mod-UNet significantly outperform other state-of-theart approaches in automated lung infection segmentation. IEEE

12.
2023 11th International Conference on Information and Education Technology, ICIET 2023 ; : 480-484, 2023.
Article in English | Scopus | ID: covidwho-20243969

ABSTRACT

In recent years, the COVID-19 has made it difficult for people to interact with each other face-to-face, but various kinds of social interactions are still needed. Therefore, we have developed an online interactive system based on the image processing method, that allows people in different places to merge the human region of two images onto the same image in real-time. The system can be used in a variety of situations to extend its interactive applications. The system is mainly based on the task of Human Segmentation in the CNN (convolution Neural Network) method. Then the images from different locations are transmitted to the computing server through the Internet. In our design, the system ensures that the CNN method can run in real-time, allowing both side users can see the integrated image to reach 30 FPS when the network is running smoothly. © 2023 IEEE.

13.
International Journal of Tourism Cities ; 9(2):325-347, 2023.
Article in English | ProQuest Central | ID: covidwho-20243914

ABSTRACT

PurposeFood festivals are prevalent for those passionate about food experience globally. More importantly, feedback from food reviewers on mass media platforms has been becoming a critical factor in facilitating the decision-making process of tourists in particular cities. Moreover, stimulating local tourism activities, thanks to food festivals, prove advantageous to the well-being of local habitants. The purpose of this paper is to provide readers with a general overview of food festival research trends in tourist cities, as tourism has the potential to contribute to targets in Goals 8, 12 and 14 on sustainable consumption and production and the sustainable use of resources, respectively, (UNWTO: World Tourism Organization).Design/methodology/approachThis study searched and filtered documents from the Scopus and Web of Science databases, as well as used bibliometric analysis and other mathematical and statistical methods, to better understand the food festival research context between 1970 and 2021. The carriers with mathematical and statistical methods. VOSviewer algorithm was used to identify critical input for visualizing bibliometric networks and to create a framework for this academic food festival research.FindingsThe findings are primarily related to pre and post-COVID-19 research on food festivals worldwide. Furthermore, using an inductive approach, this paper reveals the impact of food festivals in cities and tourist behaviors. According to the findings, the food festival research trends are about "food festivals,” "slow food festivals” and "local food festivals.” Factor analysis is one of the most common analyses in this type of research. Other studies could use the findings and limitations to select appropriate themes and analysis approaches for their research topics.Research limitations/implicationsResearch data sets are mainly from articles that may not account for all actual trends during this pandemic.Originality/valueThis review expects to provide insights into food festivals and help future researchers to recognize several research gaps such as the lack of research on food festival manufacturers and producers or the consistency in visitors' aspect research of quality service, visitors' loyal intentions, satisfaction and culinary experience. The tourism industry can find research trends of food festivals and issues following COVID-19 to find their management styles to fit the context of the post-COVID-19 pandemic, facilitating organizing a safe and effective food festival.

14.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20243833

ABSTRACT

The COVID-19 pandemic still affects most parts of the world today. Despite a lot of research on diagnosis, prognosis, and treatment, a big challenge today is the limited number of expert radiologists who provide diagnosis and prognosis on X-Ray images. Thus, to make the diagnosis of COVID-19 accessible and quicker, several researchers have proposed deep-learning-based Artificial Intelligence (AI) models. While most of these proposed machine and deep learning models work in theory, they may not find acceptance among the medical community for clinical use due to weak statistical validation. For this article, radiologists' views were considered to understand the correlation between the theoretical findings and real-life observations. The article explores Convolutional Neural Network (CNN) classification models to build a four-class viz. "COVID-19", "Lung Opacity", "Pneumonia", and "Normal"classifiers, which also provide the uncertainty measure associated with each class. The authors also employ various pre-processing techniques to enhance the X-Ray images for specific features. To address the issues of over-fitting while training, as well as to address the class imbalance problem in our dataset, we use Monte Carlo dropout and Focal Loss respectively. Finally, we provide a comparative analysis of the following classification models - ResNet-18, VGG-19, ResNet-152, MobileNet-V2, Inception-V3, and EfficientNet-V2, where we match the state-of-the-art results on the Open Benchmark Chest X-ray datasets, with a sensitivity of 0.9954, specificity of 0.9886, the precision of 0.9880, F1-score of 0.9851, accuracy of 0.9816, and receiver operating characteristic (ROC) of the area under the curve (AUC) of 0.9781 (ROC-AUC score). © 2022 ACM.

15.
2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023 ; : 2067-2071, 2023.
Article in English | Scopus | ID: covidwho-20243456

ABSTRACT

In today's computer systems, the mouse is an essential input device. Touch interfaces are high-contact planes that we use on a regular basis and frequently throughout the period. As a result, the input device gets infested with bacteria and pathogens. Despite the fact that wireless mouse have eliminated the bunch of tangled wires, there is still a desire to tap the gadget. In light of the epidemic, this proposed method employs a outlying webcam or an in-built image sensor to capture arm gestures and identify fingertip detection, allowing users to execute standard mouse activities such as left click, scrolling and other mouse activities. The algorithm is trained using machine learning with the use of image sensor and the fingers are identified efficiently. As a result, this reliance on corporeal devices to manage the computational system cancels out the requirement of man-machine interface. Thus the suggested approach will prevent the proliferation of Covid-19. © 2023 IEEE.

16.
Proceedings of SPIE - The International Society for Optical Engineering ; 12587, 2023.
Article in English | Scopus | ID: covidwho-20243426

ABSTRACT

With the outbreak of covid-19 in 2020, timely and effective diagnosis and treatment of each covid-19 patient is particularly important. This paper combines the advantages of deep learning in image recognition, takes RESNET as the basic network framework, and carries out the experiment of improving the residual structure on this basis. It is tested on the open source new coronal chest radiograph data set, and the accuracy rate is 82.3%. Through a series of experiments, the training model has the advantages of good generalization, high accuracy and fast convergence. This paper proves the feasibility of the improved residual neural network in the diagnosis of covid-19. © 2023 SPIE.

17.
Religions ; 14(5), 2023.
Article in English | Web of Science | ID: covidwho-20243156

ABSTRACT

In 2020, a WeChat mini-programme called the Dunhuang E-Tour ((sic)) was launched during the COVID-19 pandemic to showcase one of China's most important religious heritage sites, the Dunhuang Mogao Grottoes (also known as the Dunhuang Caves), and it attracted a considerable number of online tourists. Unlike the colonial image of Dunhuang in Chinese public discourse, the mini-programme does not focus on Dunhuang's history;rather, it provides a dynamic and interactive representation of Dunhuang's religious murals, painted sculptures and cave architecture. To reflect the impact of the mini-programme's digital mechanisms on users' experience, this study adopts an analytical framework that combines the walkthrough method and religious tourist perspectives to explore the image of the digital Dunhuang and how it was shaped. The analysis finds that the functions of the Dunhuang E-Tour create a culturally rich image of Dunhuang, which subverts its decades-long Dunhuang image as a site of loss in Chinese public discourse. This difference in images mirrors the potential impact of China's recent cultural policy of 'cultural confidence' in relation to its cultural and creative industries.

18.
Proceedings - 2022 2nd International Symposium on Artificial Intelligence and its Application on Media, ISAIAM 2022 ; : 197-200, 2022.
Article in English | Scopus | ID: covidwho-20242924

ABSTRACT

With the development and progress of intelligent algorithms, more and more social robots are used to interfere with the information transmission and direction of international public opinion. This paper takes the agenda of COVID-19 in Twitter as the breakthrough point, and through the methods of web crawler, Twitter robot detection, data processing and analysis, aims at the agenda setting of social robots for China issues, that is, to carry out data visualization analysis for the stigmatized China image. Through case analysis, concrete and operable countermeasures for building the international communication system of China image were provided. © 2022 IEEE.

19.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12469, 2023.
Article in English | Scopus | ID: covidwho-20242921

ABSTRACT

Medical Imaging and Data Resource Center (MIDRC) has been built to support AI-based research in response to the COVID-19 pandemic. One of the main goals of MIDRC is to make data collected in the repository ready for AI analysis. Due to data heterogeneity, there is a need to standardize data and make data-mining easier. Our study aims to stratify imaging data according to underlying anatomy using open-source image processing tools. The experiments were performed using Google Colaboratory on computed tomography (CT) imaging data available from the MIDRC. We adopted the existing open-source tools to process CT series (N=389) to define the image sub-volumes according to body part classification, and additionally identified series slices containing specific anatomic landmarks. Cases with automatically identified chest regions (N=369) were then processed to automatically segment the lungs. In order to assess the accuracy of segmentation, we performed outlier analysis using 3D shape radiomics features extracted from the left and right lungs. Standardized DICOM objects were created to store the resulting segmentations, regions, landmarks and radiomics features. We demonstrated that the MIDRC chest CT collections can be enriched using open-source analysis tools and that data available in MIDRC can be further used to evaluate the robustness of publicly available tools. © 2023 SPIE.

20.
2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242881

ABSTRACT

Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%. . © 2023 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL